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Abstract We present a model unifying general relativity and quantum mechanics. The
model is based on the (noncommutative) algebra A on the groupoid Γ = E × G where
E is the total space of the frame bundle over spacetime, and G the Lorentz group. The
differential geometry, based on derivations of A, is constructed. The eigenvalue equation
for the Einstein operator plays the role of the generalized Einstein’s equation. The alge-
bra A, when suitably represented in a bundle of Hilbert spaces, is a von Neumann alge-
bra M of random operators representing the quantum sector of the model. The Tomita–
Takesaki theorem allows us to define the dynamics of random operators which depends on
the state ϕ. The same state defines the noncommutative probability measure (in the sense
of Voiculescu’s free probability theory). Moreover, the state ϕ satisfies the Kubo–Martin–
Schwinger (KMS) condition, and can be interpreted as describing a generalized equilibrium
state. By suitably averaging elements of the algebra A, one recovers the standard geome-
try of spacetime. We show that any act of measurement, performed at a given spacetime
point, makes the model to collapse to the standard quantum mechanics (on the group G).
As an example we compute the noncommutative version of the closed Friedman world
model. Generalized eigenvalues of the Einstein operator produce the correct components
of the energy-momentum tensor. Dynamics of random operators does not “feel” singulari-
ties.
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1 Introduction

One of the driving forces of scientific progress is the evolution of concepts, and concepts
evolve when they are involved in solving problems. Currently, the main problem of the-
oretical physics is to find a sufficiently rich mathematical structure which, when suitably
interpreted, would contain in itself (as some “limiting cases”) physics of gravity and physics
of quanta. It is rather obvious that when this goal is finally reached, it will induce a radical
conceptual revolution. In a series of works [17, 18, 20–23]) we have proposed a model, based
on nuncommutative geometry, unifying general relativity and quantum mechanics (with the
perspective of including quantum field theory). We think that the main attractiveness of this
model is its conceptual structure firmly based on its mathematical architecture. The main
idea of the model consists in exploring a noncommutative algebra A, defined on a transfor-
mation groupoid Γ which is given by the action of a group (typically the Lorentz group) on
the frame bundle (E,πM,M) over spacetime M . The geometry of M (physics of gravity)
can be recovered by suitably averaging elements of A, and quantum sector of the model is
obtained by representing the algebra A on a family of Hilbert spaces associated with the
groupoid Γ . Our approach differs from that of Connes [6] and the authors following him
(e.g., [3–5, 25, 26, 29, 35, 37]) in that we explore the structure of the groupoid Γ and base
our construction of the noncommutative differential algebra on A and the (sub)module of
its derivations (similarly to the approach developed by [10]; see also [11]] whereas Connes
does this on the representation of the corresponding algebra on a Hilbert space, and he uses
differential forms rather than derivations. We go to the representation of A only to recover
the quantum sector of our model.

In the present paper, we further develop our model, both its mathematical and concep-
tual aspects. We show how strongly these aspects interact with each other. To make the
paper self-contained, new results (indicated below) are presented in a broader context of the
model’s structure. In Sect. 2, we briefly present the groupoid Γ = E × G (in the present
paper G is a noncompact group) and the noncommutative algebra A of smooth compactly
supported, complex valued functions on Γ with convolution as multiplication. The groupoid
can be regarded as a space of generalized symmetries of our model. The differential geome-
try of the groupoid Γ is based on the algebra A and its derivations. Derivations are classified
into three types: horizontal V1, vertical V2 and inner V3 [23]. The pair (A,V ), where V is a
subset of the module Der(A) of all derivations of the algebra A, is called a differential alge-
bra. We introduce it in Sect. 3. The gravitational sector of the model is presented in Sect. 4.
It is based on the differential algebra (A,V ) where V = V1 ⊕ V2. We first construct the
corresponding differential geometry (connection, curvature, Einstein operator), and then we
postulate that the eigenvalue equation for the Einstein operator should play the role of a gen-
eralized Einstein’s equation (no energy-momentum tensor is assumed). This is an important
modification with respect to [23]; its best justification being the result obtained in Sect. 5,
where the components of this equation are computed for the closed Friedman world model.
It turns out (by comparison with the usual Friedman model) that the (generalized) eigenval-
ues of the Einstein operator should be interpreted as matter sources. A suitable equation of
state turns out to be encoded in a relationship between different eigenvalues. This example
also shows that the groupoid Γ and the noncommutative algebra A are essential elements of
the model; without them this result could not be obtained. In Sect. 6, we present the quan-
tum sector of the model. The algebra A, when suitably represented in a bundle of Hilbert
spaces, is a von Neumann algebra M of random operators (the von Neumann algebra of the
groupoid Γ ). The Tomita–Takesaki theorem, applied to this algebra, allows us to define the
dynamics of random operators which depends on a state ϕ on M. The pair (M, ϕ) can thus
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be regarded as a “dynamic object” of our model. In Sect. 7, we summarize the above results
by defining a dynamical system for our model. It consists of two equations: the eigenvalue
equation for the Einstein operator and the dynamical equation of the Tomita–Takesaki the-
orem. The first of these equations corresponds to the differential algebra (A,V1 ⊕ V2), the
second is related, via a suitable representation, to the differential algebra (A,V3). In Sect. 8,
we discuss some dynamical properties of our model. If ϕ, appearing in the modular evolu-
tion, is a faithful and normal state, it also defines the noncommutative probability measure
[38, 39]. Thus the pair (M, ϕ) is both a “dynamic object” and a “probabilistic object” of the
model. For the full discussion of these properties one should refer to [22, 23]; here a new
element has been added: if the state ϕ satisfies the Kubo–Martin–Schwinger (KMS) condi-
tion, it can be interpreted as describing a generalized equilibrium state [27, 34]. Therefore,
on the fundamental level, dynamics, probability and at least some thermodynamic properties
are encoded in the same mathematical structure. In Sect. 9, we return to the example of the
noncommutative version of the closed Friedman universe, and explore its quantum sector.
The most intriguing result is that the random dynamics on the fundamental (Planck) level
does not “feel” singularities. They emerge, together with spacetime when the noncommu-
tative regime changes into the usual commutative evolution. In Sect. 10, we show how to
obtain general relativity and quantum mechanics from our model as its limiting cases. A few
remarks, in Sect. 11, concerning perspectives of the model close the paper.

2 Noncommutative Generalization of Spacetime

In our first encounter with the special theory of relativity we were not immediately exposed
to the spacetime geometry or to some other abstract mathematical structures but rather we
were instructed how to change from one inertial reference frame to another inertial reference
frame with the help of a Lorentz transformation. In this sense, the set of pairs of reference
frames and elements of the Lorentz group transforming these frames into one another forms
a natural setting for the special theory of relativity. If a suitable care is applied, the same
procedure could be extended to general relativity. These considerations lead to the following
construction.

Let πM : E → M be a frame bundle over spacetime M with the structural group G =
SO0(3,1). A fibre Ex = π−1

M (x) over x ∈ M is the set of local reference frames attached to
the point x. For any pair of such frames p,q ∈ Ex there exists g ∈ G such that p = qg. We
see that G acts on E, E ×G → E, along the fibres. This allows us to construct the Cartesian
product

Γ = E × G = {γ = (p,g) : p ∈ E,g ∈ G},
two elements of which, γ1 = (p1, g1) and γ2 = (p2, g2), can be composed (multiplied) if
p2 = p1g1 to give γ1 ◦ γ2 = (p1, g1g2). The inverse of γ = (p,g) is γ −1 = (pg,g−1). There
are two mappings: d(p,g) = p and r(p,g) = pg, called the source mapping and the tar-
get mapping, respectively. The set of units is defined to be Γ (0) = {(p, e) : p ∈ E} where e

is the unit of G. If some natural conditions are satisfied, Γ is called groupoid (for defini-
tion see [20, 31, 32]). If this purely algebraic construction is equipped with the smoothness
structure, it is called a smooth or Lie groupoid.

The above described groupoid Γ implements the idea of a space, the elements of which
consist of two reference frames d(p,g) = p and r(p,g) = pg, and the element g of the
Lorentz group G transforming p into q = pg. We refer to Γ as to the transformation
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groupoid. The same idea can be implemented by specifying only two reference frames p1

and p2 attached to the same point x of M . We thus define

Γ1 = {(p1,p2) ∈ E × E : πM(p1) = πM(p2) = x ∈ M}
with the composition law: (p1,p2) ◦ (p2,p3) = (p1,p3),p1,p2,p3 ∈ E. It is a groupoid
called groupoid of pairs. In fact, Γ and Γ1 are isomorphic as groupoids [23].

As it is well known, the geometry of spacetime M can be reconstructed in terms of the
algebra C∞(M) of smooth functions on M . Moreover, also Einstein’s equations can be de-
fined in terms of this algebra [12–14]. The natural idea would be to apply the same strategy
to the space Γ (or Γ1). It turns out that to obtain the case interesting from both mathemat-
ical and physical points of view, we should consider a noncommutative algebra A on the
groupoid Γ . A commutative algebra (A, ·) of smooth, complex, compactly supported func-
tions on Γ with the usual pointwise multiplication would give us again a classical geometry.
To obtain a noncommutative algebra we replace the usual pointwise multiplication with the
convolution: if f1, f2 ∈ A then

(f1 ∗ f2)(γ ) =
∫

Γd(γ )

f1(γ1)f2(γ
−1
1 γ )dγ1

where the integration is over all elements γ ∈ Γ beginning at p = d(γ ) which is denoted
by Γd(γ ). Let us notice that convolution algebras play the crucial role in harmonic analysis
and in representation theory, both in the case of groups and groupoids. The algebra (A,∗),
being now noncommutative, is nonlocal. It has no maximal ideals which would correspond
to points and their neighborhoods in Γ . The groupoid Γ is replaced by its noncommuta-
tive version, i.e., by the “virtual space” corresponding to the algebra (A,∗). Keeping this
in mind we shall denote this algebra by A = (C∞

c (Γ,C),∗). As we shall see in the follow-
ing sections, this algebra is rich enough to contain it itself both relativistic and quantum
structures.

If we chose the groupoid Γ1 rather than the groupoid Γ , we should define the algebra
A1 on Γ1 via the isomorphism J : A1 → A given by J (f )(γ ) = f (p,pg) for f ∈ A1 and
γ = (p,g) [23].

3 Differential Algebra

The first thing we must ensure is that the noncommutative geometry based on the algebra
A should allow us to recover the usual (noncommutative) spacetime geometry as a special
case. The natural way of doing this would be by restricting the algebra A to its center Z(A)

(i.e., to the subset of A consisting of all these elements that commute with all elements of
A). Unfortunately, Z(A) = {0}. It turns out, however, that the lifting of the algebra C∞(M)

to the total space E of the frame bundle over M , i.e., the set Z = π∗
M(C∞(M)) (which is,

of course isomorphic with C∞(M)), can be regarded as an “outer center” of the algebra A.
To be more precise, although the functions belonging to Z are not compactly supported, we
can define their action on the algebra A, α : Z ×A → A, by

α(f, a)(p,g) = f (p)a(p,g),

f ∈ Z,a ∈ A. We see that the algebra A is a module over Z = π∗
M(C∞(M)). This fact

allows us to develop a noncommutative geometry based on the algebra A which will be a
true generalization of the usual spacetime geometry.
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One can base the noncommutative geometry either on differential forms defined in terms
of the algebra A [3, 6, 25, 26, 35], or in terms of derivations of this algebra [10, 11, 24].
The first method is more common, but the second method is closer to the usual way of
doing (commutative) differential geometry. In our case, there is plenty of derivations, and
the second method seems more appropriate.

A derivation of the algebra A is a linear map v : A → A satisfying the Leibniz rule

v(a, b) = v(a)b + av(b).

It can be thought of as a generalization of the vector field concept. The set of all derivations
of the algebra A will be denoted by Der(A). It has the algebraic structure of a Z-module.

Let X̄ be a vector field on E; we shall write X̄ ∈ X (E). Let us also assume that X̄ is a
right invariant vector field, i.e.

(Rg)∗pX̄(p) = X̄(pg)

for every g ∈ G. The lifting of X̄ to Γ is defined to be

¯̄X(p,g) = (ιg)∗pX̄

where the inclusion ιg : E ↪→ E × G is given by ιg(p) = (p,g). It can be shown that the
lifting of a right invariant vector field X̄ ∈ X (E) to Γ is a derivation of the algebra A [23].

Let X̄ ∈ X (E) be a right invariant vector field. If it satisfies the condition (πM)∗X̄ = 0 it
is said to be a vertical vector field. Such vector fields, when lifted to Γ , are derivations of
the algebra A and are called vertical derivations.

Let us suppose that a connection is given in the frame bundle πM : E → M (for details
see [23]). With the help of this connection we lift a vector field X on M to E, i.e., X̄(p) =
σ(X(πM(p)), πM(p) = x ∈ M where σ is a lifting homomorphism. This vector field is right
invariant on E. If we lift it further to Γ

¯̄X(p,g) = (ιg)∗pX̄(p) ∈ X (Γ ),

it preserves its right invariance property, and is a derivation of the algebra A. We call it a
horizontal derivation of A.

The algebra A has also derivations typical for noncommutative algebras. They are called
inner derivations, denoted by Inn(A), and defined to be

Inn(A) = {ad(a) : a ∈ A}

where (ad(a))(b) := a ∗ b − b ∗ a. Of course, for commutative algebras all such derivations
vanish. It is important to notice that the mapping Φ(a) = ad(a), for every a ∈ A, establishes
the isomorphism between the algebra A and the space Inn(A) as Z-moduli [20].

By the differential algebra we understand a pair (A,V ) where A is (not necessarily
commutative) algebra and V ⊂ Der(A) is a (sub)module of its derivations. In Sect. 4, we
construct the gravitational sector of our model basing on the differential algebra (A,V )

where V = V1 ⊕ V2 with V1 and V2 being horizontal and vertical derivations, respectively.
The Z-module V3 = Inn(A) is responsible for quantum effects; it is taken into account in
Sect. 6.
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4 Gravitational Sector

4.1 Geometry

In the present section, we compute the “groupoid geometry” for the case when V = V1 ⊕V2

and G is a noncompact and semisimple group (which includes the group SO0(3,1)); the
case with a finite group G was treated in [21]. As the metric G : V × V → Z we choose

G(u, v) = ḡ(u1, v1) + k̄(u2, v2)

where u1, v1 ∈ V1, u2, v2 ∈ V2. The metric ḡ is evidently the lifting of the metric g on space-
time M , i.e.,

ḡ(u1, v1) = π∗
M(g(X,Y ))

where X,Y ∈ X (M). We assume that the metric k̄ is of the Killing type. In principle, more
general metrics than G could also be considered.

The next step in our construction is to define preconnection by the Koszul formula

(∇∗
uv)w = 1

2
[u(G(v,w)) + v(G(u,w)) − w(G(u, v))

+ G(w, [u,v]) + G(v, [w,u]) − G(u, [v,w]).
In [23] we have proved that if V is a Z-module of derivations of an algebra (A,∗) such that
V (Z) = {0} then, for every symmetric nondegenerate tensor g : V × V → Z, there exists
exactly one connection g-consistent with the preconnection ∇∗ which is given by

∇uv = 1

2
[u,v].

We assume that, for V2, the metric is of the Killing form

g(u, v) = Tr(u ◦ v)

(the g-consistency condition is clearly satisfied). For the group G (which in our case is
semisimple) the Killing form is

B(V ,W) = Tr(ad(V ) ◦ ad(W))

where V,W are elements of the Lie algebra g of the group G. The Killing form B is nonde-
generate. Since the tangent space to any fiber Ex,x ∈ M at a fixed point p ∈ E, is isomorphic
to g, each invariant vertical vector field X̄ can be represented by a g-valued function on E,

and one can prove that B(X̄(p), Ȳ (p)) depends only on πM(p) ∈ M . Therefore, the metric
k̄ : V2 × V2 → Z is given by

k̄( ¯̄X, ¯̄Y) = B(X̄(p), Ȳ (p)).

The trace for the algebra A1 (which is isomorphic to the algebra A) is given by

Tr(a)(p) =
∫

G

a(pg,pg)dg.
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It is clear that Tr(a) ∈ Z.
The curvature, for all Vi , i = 1,2, is defined in the usual way

i

R (u, v)w = i∇u

i∇v w− i∇v

i∇u w− i∇[u,v] w.

For i = 2, we readily compute

2
R (u, v)w = −1

4
[[u,v],w].

For i = 1,2 and every endomorphism T : Vi → Vi , there exists the usual trace Tr(T ) ∈ Z,

and we can define
i

Ruw: Vi → Vi by

i

Ruw (v) = i

R (u, v)w.

Consequently, the Ricci curvature is

i

ric (u,w) = Tr(
i

Ruw),

and the adjoint Ricci operator
i

R: Vi → Vi is given by

i

ric (u,w) = i

G (
i

R (u),w)

where
1
G= ḡ and

2
G= k̄. If the metric

i

G is nondegenerate, there exists the unique
i

R satisfying
the above equation for every w ∈ Vi .

The curvature scalar is

i
r= Tr(

i

R).

For V2 (for which the usual trace exists) we compute

2
ric (u,w) = 1

4
k̄(u,w)

for every u,w ∈ V2.

4.2 Generalized Einstein Equation

In the present paper we postulate that the generalized Einstein equation should have the
form of the eigenvalue equation for the Einstein operator G := R− 1

2 ridV where r = TrR.
Let us notice that we do not assume a priori energy-momentum tensor in any form. The
motivation for this assumption is that on the fundamental level we expect to have a “pure
pregeometry”, and the “matter content” should be somehow produced from it at a later stage.
As we shall see in the next section, this is indeed the case, at least for the noncommutative
version of the closed Friedman world model.

The eigenvalue equation for the Einstein operator is

G − τ idV = 0 (1)
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where τ ∈ Z and v ∈ V ; τ will be called a generalized eigenvalue of the operator G (gener-
alized, because it is a function rather than a number).

If v ∈ V1, (1) reflects essentially the geometry of space-time M .
If we assume that the metric k̄ is of the Killing type then for v ∈ V2 and G = SO0(3,1)

the dimension of the Z-module V2 is equal to the dimension of the Lie algebra of G which is
6-dimensional. Consequently, Tr(idV2) = 6. Since, in this case, R = 1

4 idV2 , we have r = 3
2 ,

and the Einstein equation assumes the form

(
τ + 1

2

)
(v) = 0.

We see that for τ = − 1
2 every v ∈ V2 solves this equation, and for τ 
= − 1

2 there is only the
trivial solution.

5 Noncommutative Closed Friedman Universe

As a simple example let us consider the closed Friedman world model. Its spacetime M =
{(η,χ, θ,ϕ) : η ∈ (0, T ), (χ, θ,ϕ) ∈ S3} = (0, T )×S3, where (0, T ) ⊂ R, carries the metric

ds2 = R2(η)(−dη2 + dχ2 + sin2 χ(dθ2 + sin2 θdϕ2)).

The initial singularity is characterized by: R2(η) → 0 as η → 0, and the final singularity by:
R2(η) → 0 as η → T .

Let (πM : E → M) be a frame bundle over M where

E = {(η,χ, θ,ϕ,λ) : (η,χ, θ,ϕ) ∈ M,λ ∈ R} = M × R.

The structural group of the frame bundle is

G =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

cosh t sinh t 0 0
sinh t cosh t 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠ , t ∈ R

⎫⎪⎬
⎪⎭ ,

To have the orthonormal frames we make the transformation ∂μ → 1
R(η)

∂μ. This group of
“Lorentz rotations” ([2], p. 22) has been chosen by us because, in spite of its simplicity, it
gives an insight into many aspects of the general case (see [9], Sect. 3).

The space of the pair groupoid is given by

Γ = {(η,χ, θ,ϕ,λ1, λ2) : λ1, λ2 ∈ R}.

If a, b ∈ A = C∞
c (Γ,C) then

(a ∗ b)(η,χ, θ,ϕ,λ1, λ2) =
∫

R
a(η,χ, θ,ϕ,λ1, λ)b(η,χ, θ,ϕ,λ,λ2)dλ.

The “outer center” of this algebra is Z = {a(η,χ, θ,ϕ) : (η,χ, θ,ϕ) ∈ M}. Since the convo-
lution is defined on the groupoid rather than on the group, the algebra A is noncommutative
in spite of the fact that the group G = R is Abelian.
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We consider the Z-submodule V = V1 ⊕V2 of horizontal derivations and vertical deriva-
tions of the algebra A. The metric on V is

ds2 = −R2(η)dη2 + R2(η)dχ2 + R2(η) sin2(χ)dθ2

+ R2(η) sin2(χ) sin2(θ)dϕ2 + dλ2.

The Einstein operator is of the form G = Gc
d = diag{B,h,h,h, q} where

B = −3
1

R2(t)
− 3

R′2(t)
R4(t)

, h = − 1

R2(t)
+ R′2(t)

R4(t)
− 2

R′′(t)
R3(t)

,

q = −3
1

R2(t)
− 3

R′′(t)
R3(t)

.

We assume the field equation in the form of the eigenvalue equation for the Einstein operator
G : V → V , i.e.,

G(u) = τ · u, (2)

or in the matrix form

⎛
⎜⎜⎜⎝

B 0 0 0 0
0 h 0 0 0
0 0 h 0 0
0 0 0 h 0
0 0 0 0 q

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

u1

u2

u3

u4

u5

⎞
⎟⎟⎟⎠ = τ

⎛
⎜⎜⎜⎝

u1

u2

u3

u4

u5

⎞
⎟⎟⎟⎠

where u1, u2, u3, u4 ∈ V1, u5 ∈ V2.
Here τ = (τ1, . . . , τ5), where τi = 1,2, . . . ,5, are generalized eigenvalues of G. We find

them by solving the equation

det(G − τ · I) = 0. (3)

The solutions are

τB = −3
1

R2(η)
− 3

R′2(η)

R4(η)
, (4)

τh = − 1

R2(η)
+ R′2(η)

R4(η)
− 2

R′′(η)

R3(η)
, (5)

τq = −3
1

R2(η)
− 3

R′′(η)

R3(η)
. (6)

The eigenvectors corresponding to these generalized eigenvalues τi form the submodules
Wi , i = 1, . . . ,5 of V

V1 ⊕ V2 = W1 ⊕ W2 ⊕ W3 ⊕ W4 ⊕ W5,

or

V1 ⊕ V2 = WB ⊕ Wh ⊕ Wq
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where WB = W1 is a 1-dimensional submodule corresponding to the generalized eigenvalue
τB , Wh = W2 ⊕ W3 ⊕ W4 is a 3-dimensional submodule corresponding to the generalized
eigenvalue τh, and Wq = W5 is a 1-dimensional submodule corresponding to the generalized
eigenvalue τq .

Let us notice that G is a homothety on Wi with the factor τi .
By comparing equations (4) and (5) with the components of the perfect fluid energy-

momentum tensor for the Friedman world model, we easily identify

τB = 8πGρ(η),

τh = −8πGp(η)

where G is the Newtonian gravitational constant, ρ and p are density and stress functions,
respectively, and the velocity of light c = 1. If we denote

T 0
0 = τB

8πG
,

T i
k = − τh

8πG
δi
k, i, k = 1,2,3,

we obtain the components of the energy-momentum tensor T μ
ν ,μ, ν = 0,1,2,3 as general-

ized eigenvalues of the Einstein operator G corresponding to the submodules WB and Wh,
respectively.

And what about (6)? We easily verify that

τq = 4πG(ρ(η) − 3p(η)) (7)

which leads to

τq = 1

2
τB + 3

2
τh. (8)

It can be easily seen that τq is the trace of T μ
ν . Let us also notice that (7) is related to the

equation of state for the Friedman model. Indeed,

• if τq = 4πGρ then we have the equation of state for dust p = 0;
• if τq = 0 then we have the equation of state for radiation p = (1/3)ρ;
• if τq = −16πGp then we have Zeldovitch’s stiff equation of state p = −ρ.

As we can see, the remaining generalized eigenvalue is responsible for the equation of state.
From the mathematical point of view, any formula satisfying (8) can serve as an equation of
state, although only some of them have a physical meaning.

The usual Einstein equations are obtained in a straightforward way

G|WB⊕Wh
= 8πG · T ,

where T = T μ
ν , which read

8πGρ(η) = −3
1

R2(η)
− 3

R′2(η)

R4(η)
, (9)

8πGp(η) = 1

R2(η)
− R′2(η)

R4(η)
+ 2

R′′(η)

R3(η)
. (10)
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It is straightforward to verify that solving equations (9) and (10) for the above equations
of state, we obtain the well known solutions

• R(η) = 4πm
3 (1 − cos(η)), where m = ρ(η)R3(η) = const, for dust;

• R(η) =
√

8πGM
3 sin(η), where M = ρ(η)R4(η) = const, for radiation; and

• R(η) = 2G1/4( 2π
3 )1/4N1/4

√
tan(η

1+tan2(η)
, where N = ρ(η)R6(η) = const, for Zeldovitch’s stiff

matter.

We have started with field equation (2) understood as the eigenvalue equation for the
Einstein operator, and by solving the eigenvalue problem we were able to produce the perfect
fluid energy momentum tensor. No matter source has been assumed a priori. In this sense,
we can say that in the noncommutative closed Friedman model geometry generates matter.
It was an old Wheeler’s idea to produce “matter out of pregeometry” [40]; the latter being “a
combination of hope and need, of philosophy and physics and mathematics and logic” ([28],
p. 1203). The effect presented above can be regarded as a step towards the implementation
of this idea in the context of a concrete mathematical model.

In Sect. 9 we discuss some aspects of the quantum sector of the closed Friedman model.

6 Quantum Sector

6.1 Algebra of Random Operators

The quantum sector of our model can be extracted from the groupoid algebra A with the
help of its regular representation in the Hilbert space Hp = L2(Γ p), for every p ∈ E (Γ p

being the set of all elements of Γ ending at p),

πp : A → B(Hp),

where B(Hp) is the algebra of bounded operators on the Hilbert space Hp . The representa-
tion πp is given by

(πp(a)ψ)(γ ) =
∫

Γd(γ )

a(γ1)ψ(γ −1
1 ◦ γ )dγ1

where a ∈ A,ψ ∈ Hp, γ, γ1 ∈ Γ . Here the Haar measure on the group G, transferred to each
fiber of Γ , forms a Haar system on Γ .

It is interesting to notice that the quantum sector of our model exhibits strong proba-
bilistic properties from the very beginning (without putting them by hand into the model).
We shall show that every a ∈ A generates a random operator ra = (πp(a))p∈E , acting on a
collection of Hilbert spaces {Hp}p∈E where Hp = L2(Γ p).

An operator ra is a random operator if it satisfies the following conditions [6].

(1) If ξp, ηp ∈ Hp then the function E → C, given by

E � p → (raξp, ηp),

a ∈ A, is measurable in the usual sense (i.e., with respect to the usual manifold measure
on E).
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(2) The operator ra is bounded, i.e., ‖ra‖ < ∞ where

‖ra‖ = ess sup‖πp(a)‖.
Here “ess sup” denotes essential supremum, i.e., supremum modulo zero measure sets.

In our case, both these conditions are satisfied. Let us also notice that πp(a), for every
p ∈ E, is a bounded operator on Hp .

There exist the isomorphisms Ip : L2(G) → Hp , for every p ∈ E, given by

(Ipψ)(pg−1, g) = ψ(g)

which can be used to establish the relationship between random operators and operators on
Hp . These isomorphisms will play an important role in our further analysis.

Let us denote by M0 the algebra of equivalence classes (modulo equality almost every-
where) of bounded random operators ra, a ∈ A, and let us define M = M′′

0 where M′′
0

denotes the double commutant of M0. The algebra M is a von Neumann algebra [6]. We
shall call it the von Neumann algebra of the groupoid Γ .

As well known, the work of Segal, Kastler, Haag, Gelfand an others has developed an
algebraic description of quantum systems (with both finite and infinite number of degrees of
freedom). It consists of the following main ingredients: (1) an abstract C∗-algebra encoding,
among others, observables of the system and its statistical properties, (2) automorphisms
of this algebra encoding the dynamics of the system and its symmetries, and (3) a state
functional defining a probability measure on observables [1]. It can be shown that M itself
is a C∗-algebra [30] and, as we shall see in the following subsections, it satisfies all the above
requirements. Therefore, the algebra M is a mathematical structure that can be interpreted
as a true generalization of the usual quantum theory in its algebraic formulation.

6.2 Noncommutative Dynamics

The mathematical structure of our model is encoded in the differential algebra (A,Der(A)).
As we have seen in Sect. 4, the field equation of the gravitational sector was obtained by
considering the Z-submodule V = V1 ⊕V2 ⊂ Der(A); in the present subsection we consider
the Z-submodule V3 = Inn(A), and show that this leads to the dynamic equation of the
quantum sector of our model.

Let us then consider the differential algebra (A, Inn(A)), and let us remember that A
and Inn(A) are isomorphic as Z-moduli (the isomorphism id given by a → ada , see above
Sect. 3). Moreover, every a ∈ A generates the random operator ra = (πp(a))p∈E and, as we
have seen, the space M0 of such operators can be completed to the von Neumann algebra
M. (It is interesting to notice that all derivations of any von Neumann algebra are inner [8],
pp. 349–357.) In [23] we have shown that the Tomita–Takesaki theorem can be applied to
the algebra M (this algebra is semifinite) to obtain the evolution of random operators (see
also [7]). Let us define the Hamiltonian as Hϕ

p = Logρ̂ϕ
p , where ρ̂(p) is a positive, trace

class operator in B(Hp), and ϕ is a state on M defined to be

ϕ(A) =
∫

M

tr(ρ̂(p)A(p))dμ(x).

Let us notice that the integrated function depends only on x ∈ M . We additionally assume
that ϕ(1) = 1 [23]. On the strength of the Tomita–Takesaki theorem there exists a one-
parameter group of automorphisms σ

ϕ
t , called modular group,

σ
ϕ
t (ra(p)) = eitH

ϕ
p ra(p)e−itH

ϕ
p (11)
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for every p ∈ E. Equation (11) can also be written in the form

i�
d

dt
σ

ϕ
t (ra(p)) = [ra(p),Hϕ

p ] (12)

where the Planck constant � is inserted to have the correspondence with quantum theory.
This equation describes the state dependent evolution of random operators with respect to
the parameter t ∈ R of the modular group. We can say that the pair (M, ϕ) is a dynamical
object of our model. Equation (12) is a generalization of the Heisenberg equation of the
usual quantum mechanics with the only difference that it now depends on the state ϕ. There
exists the canonical way of getting rid of this dependence based on the following Connes–
Nicodym–Radon construction [36]. Let U = {u ∈ M : uu∗ = u∗u = 1} be the unitary group
of the algebra M. Two automorphisms α1 and α2 of the von Neumann algebra M are said
to be inner equivalent if there is an element u ∈ U such that

uα2(r) = α1(r)u

for r ∈ M. The set of equivalence classes of this relation is called the group of outer auto-
morphisms denoted by Out(M). In general, the modular transformations σ

ϕ
t are not inner

automorphisms of M, but they canonically project onto the same one-parameter group in
Out(M) which is independent of the state ϕ. However, we have demonstrated in [22] that
the von Neumann algebra M of our model is semifinite, and the Dixmier–Takesaki theo-
rem [6] states that if M is semifinite then every state dependent modular evolution is inner
equivalent to the trivial one. This means that the state independent “outer evolution” is triv-
ial: there is a state independent time but it does not flow (or nothing happens in it). This once
more demonstrates the radical character of the noncommutative regime of our model (in its
present form)—it admits only a state dependent dynamics. In the following subsection, we
shall show how this peculiarity is related to the concept of probability.

To sum up. There is an isomorphism Inn(A) → M0 (by ad(a) → a → ra , see the next
section), and the latter space can be completed to the von Neumann algebra which, together
with a suitable state ϕ, forms a dynamical object of our model. We may thus say that (11)
or (12) are natural dynamical equations for the quantum sector of our model, and that they
can be traced back to the differential algebra (A, Inn(A)).

7 Dynamical System

Mathematical structure of our model is encoded in the differential algebra (A,Der(A))

where Der(A) = V1 ⊕ V2 ⊕ V3. The Z-submodule V = V1 ⊕ V2 is responsible for the grav-
itational sector, and the field equation for this sector assumes the form of the generalized
eigenvalue equation (1). The submodule V3 is responsible for the quantum sector, and the
dynamics of this sector is given by “modular equation” (11) [resp. (12)]. Therefore, we
can say that (1) and (11) [resp. (12)] form the “dynamical system” of our model. However,
these two equations are of a very different character: (1) is classically geometric, and (11) is
quantum probabilistic. Is there a possibility to make these equations “more unified”? Indeed,
there is such a possibility. To show it, we must first prove the following lemma.

Lemma The mapping π : A → M0, given by π(a) = (πp(a))p∈E , is an isomorphism of
algebras.
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Proof The mapping π is an isomorphism since, for every p ∈ E, πp is a representation of
the algebra A. Moreover, π is an injection. Indeed, let ra ∈ M0 and ra = 0. This means that
π(a) = 0 for μ-almost all p ∈ E where μ is a measure on E. Consequently, for μ-almost
all p ∈ E and all ψ ∈ L2(Γ p) one has πp(a)ψ = 0, i.e.,

(πp(a)ψ)(p1,p) =
∫

EπM (p)

a(p1,p2)ψ(p2,p)dp2 =
∫

G

a(p1,pg)ψ(pg,p)dg = 0.

We have made the substitution p2 = pg. Let ψ(p1,p) = a(p,p1). We have

(πp(a)ψ)(p,p) =
∫

G

a(p,pg)a(p,pg)dg =
∫

G

|a(p,pg)|2dg = 0.

This means that the support of ap := a(p,pg) is of zero measure and, consequently, the
same is valid for a. But a is of class C∞; therefore a = 0 which ends the proof.

Since the mapping a → ra is an isomorphism of algebras, every derivation u : A → A
defines the derivation ũ : M0 → M0 by

ũ(ra) = ru(a).

This allows us to define the Einstein operator G̃ : Ṽ → Ṽ , where Ṽ ⊂ Der(M0), by

G̃(ũ)(ra) = rG(u)a
.

This is valid only for u ∈ V1 ⊕ V2 since, for u ∈ V3, G(u) is not defined. Therefore, if
u ∈ V1 ⊕ V2 is an eigenvector of the Einstein operator G with the generalized eigenvalue τ

then

G̃(ũ)(ra) = r(τu)(a)) = τ · ru(a) = τ · ũ(ra).

We thus can write the “dynamical system” for our model in the following form

G̃(ũ) = τ · ũ (13)

for u ∈ V1 ⊕ V2, and

σ
ϕ
t (ra(p)) = eitH

ϕ
p ra(p)e−itH

ϕ
p (14)

for every p ∈ E and a corresponding, in the unique manner, to the inner derivation ada ∈ V3.
Since our model consists of the differential algebra (A,Der(A)), its dynamical equa-

tion should constrain both A and Der(A). This is indeed the case: (13) is essentially for
derivations, whereas (14) is for the algebra.

8 Dynamical Properties of the Quantum Sector

The proposed model has a remarkable unifying power. In this section, we show how in its
mathematical structure dynamics, probability and thermodynamics are unified.
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8.1 Noncommutative Probability

In classical probability theory, basic objects of study are random variables, i.e., measurable
functions from a given probability space into the set of reals R (equipped with the Borel
σ -algebra structure). With any such random variable X there is associated a probability
measure μX(B) for any Borel set B . The measure μX is also called the distribution of X. In
noncommutative probability theory [38, 39], random variables are replaced by operators on a
Hilbert space H. They are also called noncommutative random variables. Instead of working
with the whole algebra B(H) of random operators on H one usually restricts to a subalgebra
which is a von Neumann algebra. We recall that, by definition, it is a subalgebra M of B(H)

containing the multiplicative unit of B(H) and closed under the adjoint operation and under
taking limits in the weak topology on B(H), i.e., topology induced by the linear functionals
b → 〈bξ, η〉, ξ, η ∈ H. Now, we must look for a suitable counterpart of the probability
measure on M. We need for it a kind of positivity and normalizability conditions. This is
implemented by the concept of state on the von Neumann algebra M. A linear functional
ϕ : M → C is a state on M if it takes nonnegative values on positive operators on M, and
satisfies the condition ϕ(1) = 1. The pair (M, ϕ), where M is a von Neumann algebra and ϕ

a state on M, is called a noncommutative probability space; ϕ is called probability measure
on M. We shall additionally assume (as it is often done) that ϕ is a faithful and normal state
on M. Faithful means that ϕ does not annihilate any nonzero positive element of M [i.e.,
ϕ(r) = 0 implies r = 0 for any positive element r ∈ M]. Normal means that if r ∈ M is
the supremum of a monotonically increasing net {ri} in the collection of positive elements
of M then ϕ(r) = supp(ri). The motivation for the above definition of noncommutative
probability space comes from the fact that if M is a commutative von Neumann algebra, M
is naturally isomorphic with the algebra of bounded measurable functions (modulo equality
almost everywhere) on an interval.

We thus have an ensemble of noncommutative probability spaces (M, ϕ)ϕ∈F where F

denotes a collection of normal and faithful states on M. As we have seen in the preceding
subsection, each member (M, ϕ) of this ensemble is also a “dynamic object” defining the
modular evolution σϕ

s . In this context it seems natural that every noncommutative probability
measure ϕ determines its own dynamics of random operators (for more see [22]). In this
sense, two so far independent concepts are unified: every dynamics is probabilistic and every
probability is dynamic.

8.2 Dynamics, Probability and Thermodynamics

For the physicist any probabilistic dynamics is inseparably linked with thermodynamic prop-
erties. To see that this is also the case in the noncommutative context let us first remember
some theoretical concepts.

A state ϕ on the von Neumann algebra M is said to satisfy the Kubo–Martin–Schwinger
condition (at inverse temperature β), or is simply said to be a KMS state, with respect to
a one-parameter group {σs : s ∈ R} of automorphisms of M if, for each A,B ∈ M, there
exists a bounded continuous function on the strip {z ∈ C : 0 ≤ Im z ≤ 1}, F : {z ∈ C : 0 ≤
Im z ≤ 1} → C, which is analytic in the interior of the strip and satisfies the following
conditions

F(s + βi) = ϕ(Aσs(B))

and

F(s) = ϕ(σs(B)A),
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for all s in R. Here β = 1/kT with k being the Boltzmann constant and T absolute temper-
ature [36].

Let ϕ be a normal and faithful state, and σ
ϕ
t , t ∈ R, the modular group. Then ϕ is a KMS

state with respect to σ
ϕ
t and satisfies the condition ϕ ◦ σ

ϕ
t = ϕ. Moreover, such a modular

group σ
ϕ
t is uniquely determined ([7], Sect. 2.5).

In quantum field theoretical statistical mechanics, KMS states are interpreted as thermal
equilibrium states (at inverse temperature β). Rovelli argued that also in the relativistic con-
text equilibrium states can be characterized as faithful states on the algebra of observables
whose modular group is σϕ

s [27, 34]. If we adopt this interpretation, we can claim that in
the noncommutative regime of our model dynamics, probability and at least some aspects
of thermodynamics are unified in the same mathematical structure.

9 Random Dynamics of the Closed Friedman Universe

To illustrate the random behavior in our model, let us return to the noncommutative version
of the closed Friedman universe. For simplicity we consider the two dimensional case M =
[0, T ] × S1. It is obvious that the random evolution in this world model is expected to occur
at its earliest and latest phases in neighborhoods of its initial and final singularities.

The representation of the algebra A, πp : A → B(L2(Γ p)), where Γ p = {(η,χ,λ1, λ) :
λ1 ∈ R} for p = (η,χ,λ)), is now given by

(πp(a)ψ)(λ1) =
∫

R
a(η,χ,λ1, λ2)ψ(η,χ,λ2, λ)dλ2,

a ∈ A, ψ ∈ L2(Γ p), and λ is fixed.
The isomorphisms Ip : L2(R) → L2(Γ p) are given by

(Ip(ψ0))(η,χ,λ1, λ) = ψ0(λ1)

for ψ0 ∈ L2(R). In this case, the regular representation assumes the form

(π̃p(a)ψ0)(λ1) =
∫

R
a(η,χ,λ1, λ2)ψ0(λ2)dλ2 =

∫
R

aη,χ (λ1, λ2)ψ0(λ2)dλ2.

The operator π̃p(a) is Hermitian if aη,χ (λ2, λ1) = aη,χ (λ1, λ2), λ1, λ2 ∈ R, for every
(η,χ) ∈ M . We have the norm ess sup(‖π̃p(a)‖) < ∞. Therefore, (π̃p(a))p∈E are random
operators. The algebra M0 of equivalence classes (modulo equality everywhere) of bounded
random operators is of the form M0 = {E � p → π̃p(a) ∈ B(L2(R)) : a ∈ A}. It can be
shown [33] that M0 generates the von Neumann algebra

M � L∞(M,B(L2(R)).

Let A = (π̃p(a))p∈E . Let us also notice that it is enough to define the states on M0. On
the strength of Proposition B.1 of [33] such normal states are of the form

ϕ(A) =
∫

M×R×R
a(η,χ,λ1, λ2)ρ(η,χ,λ1, λ2)dηdχdλ1dλ2 (15)

where ρ is the density function. It must be nonnegative, Hermitian and integrable with
the corresponding integral equal to 1. To be faithful it must satisfy the condition:
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ρ(η,χ,λ1, λ2) > 0 (modulo zero measure subsets). Of course, there is one-to-one corre-
spondence between ϕ and ρ.

The important fact is that functional (15) is well defined also in the presence of the
initial and final singularities. In the closed Friedman world model both these singularities
are malicious, and consequently the outer center Z consists only of constant functions [15,
16, 21], but this fact has no influence on the form of functional (15). Therefore, we can
say that ϕ(A) does not “feel” any singularity. Let us also notice that the functional ϕ(A)

prolongs well to Z; namely, if f ∈ Z, one has

ϕ(A) = k

∫
M×R×R

ρ(η,χ,λ1, λ2)dηdχdλ1dλ2 = k

where k is a constant value of f . This means that from the macroscopic point of view ϕ(A)

is constant.
On the strength of the Tomita–Takesaki theorem, the functional ϕ (which is normal and

faithful) determines a modular group σ
φ
t , t ∈ R of automorphisms of the von Neumann

algebra M. In terms of this group one can define the (state dependent) dynamics of random
operators (π̃p(a))p∈Ē , a ∈ Ā. Since the functional ϕ does not feel singularities, they are
irrelevant for the dynamics of the Friedman model on its fundamental level. They appear
only in the process of taking the ratio M̄ = Ē/G when space-time M emerges out of the
noncommutative regime; bars over M and E denote here suitable completions of M and E,
correspondingly (for the analysis of this process see [15, 16, 19]).

10 Transition to General Relativity and Quantum Mechanics

It is clear that to go from our model to general relativity one must “restrict” the algebra
A = C∞(Γ,C) to its “outer center” Z = π∗

M(C∞(M)) which, being isomorphic to C∞(M),
naturally reproduces the usual spacetime geometry. It is interesting that this can also be
done with the help of the following “averaging” procedure. Let Ã be the extension of the
algebra A

Ã = {a ∈ C∞(Γ,C) : ∀x ∈ M,a|Γx ∈ C∞
c (Γx,C)}

where Γx = Ex × G. Let further ã be the function defined on E × G × G, corresponding to
a, defined in the following way: ã(p0, g1, g2) = a(p0g1, g

−1
1 g2). Then the “averaging” of a

is defined to be

〈a〉 = (Tra)(x) =
∫

G

ã(p0, g, g)dg. (16)

It is clear that 〈a〉 ∈ Z which is isomorphic to the algebra C∞(M), and in terms of this
algebra general relativity can be reconstructed [12–14].

The transition to quantum mechanics is even more interesting. If a is a Hermitian el-
ement of the algebra A then πp(a) is a Hermitian element of (B(Hp)) (since πp is a
∗-representation of the algebra A). A random operator ra(p) = πp(a) is Hermitian if
(ra(p)ψ,ϕ) = (ψ, ra(p)ϕ). Moreover, it is a compact operator since a has the compact sup-
port. On the strength of the spectral theorem for Hermitian compact operators in a separable
Hilbert space, there exists in Hp an orthonormal countable Hilbert basis of eigenvectors
{ψi}i∈I of the Hermitian operator ra(p), and we can write its eigenvalue equation as

ra(p)ψi(p) = λi(p)ψi(p)
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for every p ∈ E. Here λi : E → R is a generalized eigenvalue of the operator ra . However,
every measurement is always done in a given local reference frame p ∈ E, and when such a
measurement has been done the generalized eigenvalue λi collapses to the eigenvalue λi(p).
Let us look deeper into the mechanism of this collapse. Each act of measurement, performed
at p, defines the isomorphism I−1

p : Hp → L2(G) of Hilbert spaces (see, Sect. 4.1) which
transfers the algebra of random operators into the usual algebra of operators on the Hilbert
space L2(G). In this way, one obtains the usual quantum mechanics (on the group G).

For instance, let us apply the mapping I−1
p to the left hand side of (12), and the mapping

Ip to its right hand side. By doing so, we obtain the usual Heisenberg equation for the
evolution of a ∈ A

d

dt
π̃(a(t)) = i[H̃ ϕ, π̃(a(t))]

where π̃(a) = I−1
p ◦ πp ◦ Ip and H̃ ϕ = I−1

p ◦ Hϕ
p ◦ Ip . The only difference as compared

with the usual Heisenberg equation is that the above equation depends on the state ϕ. In
more realistic models, to which the Connes–Nikodym–Radon construction applies, even
this difference will disappear [23].

In the light of the above analysis, the usual quantum mechanics is but a theory of mea-
surement within the larger structure of our model. When the act of measurement is per-
formed, the larger structure collapses to its substructure known as quantum mechanics.

11 Perspectives

We do not claim that the model presented in this work should be regarded as a concurrence
with respect to theories like superstring theory or quantum loop theory. First, it is not ad-
vanced enough and, second, we treat it rather as a mean to deepen our understanding of
conceptual subtleties that are to be met along the road leading to the unification of physics.
It is not impossible that some elements of this model, or of its future more mature forms,
could be incorporated into better known approaches.

The noncommutative version of the closed Friedman world model, presented in this
work, is only a “test model”, but it exhibits a remarkable property. Although in the orig-
inal field equation no matter term was explicitly included, the correct components of the
energy-momentum tensor (density and pressure) are obtained as generalized eigenvalues of
the Einstein operator. This effect can be regarded as essentially mitigating the strong di-
chotomy between geometry and matter inherent in the usual Einstein field equation.

Another interesting problem related to the search for a fundamental theory is whether
the initial (or final) singularity will survive such a revolution. Usually, either “yes” or (more
often) “no” answers are given to this question. Our model discloses the third possibility.
Simple calculations for a closed Friedman world model show that the random character of
dynamics on the fundamental level makes the question concerning the singularities irrele-
vant. Singularities emerge from the noncommutative regime together with the macroscopic
spacetime. This result remains in agreement with our previous works on classical singulari-
ties with the help of noncommutative methods [15, 16, 19].

Although the conceptual structure of our model seems esthetically satisfactory in many
respects, we are aware of various its limitations; some of them could be overcome by en-
riching the architecture of the model. This could be done in many ways, perhaps the most
obvious would be by taking into account the bialgebraic (or Hopf algebraic) structure of
the groupoid algebra (some coalgebra structure has been taken into account in discussing
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observables of the model [21]). The obvious next step to do is the elaboration of quantum
field theoretical aspects of the model (spinor bundles, Dirac’s operator, etc.) together with
the gauge theoretic approach. Some preliminary work in this direction is under way.
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